Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Inflamm Res ; 17: 2217-2231, 2024.
Article in English | MEDLINE | ID: mdl-38623466

ABSTRACT

Purpose: Neuroinflammation occurs in response to central nervous system (CNS) injury, infection, stimulation by toxins, or autoimmunity. We previously analyzed the downstream molecular changes in HT22 cells (mouse hippocampal neurons) upon lipopolysaccharide (LPS) stimulation. We detected elevated expression of Fibrillarin (FBL), a nucleolar methyltransferase, but the associated proinflammatory mechanism was not systematically elucidated. The aim of this study was to investigate the underlying mechanisms by which FBL affects neuroinflammation. Methods: RT-real-time PCR, Western blotting and immunofluorescence were used to assess the mRNA and protein expression of FBL in HT22 cells stimulated with LPS, as well as the cellular localization and fluorescence intensity of FBL. BAY-293 (a son of sevenless homolog 1 (SOS1) inhibitor), SR11302 (an activator protein-1 (AP-1) inhibitor) and KRA-533 (a KRAS agonist) were used to determine the molecular mechanisms underlying the effect of FBL. AP-1 was predicted to be the target protein of FBL by molecular docking analysis, and validation was performed with T-5224 (an AP-1 inhibitor). In addition, the downstream signaling pathways of FBL were identified by transcriptome sequencing and verified by RT-real-time PCR. Results: LPS induced FBL mRNA and protein expression in HT22 cells. In-depth mechanistic studies revealed that when we inhibited c-Fos, AP-1, and SOS1, FBL expression decreased, whereas FBL expression increased when KRAS agonists were used. In addition, the transcript levels of inflammatory genes in the NF-kB signaling pathway (including CD14, MYD88, TNF, TRADD, and NFKB1) were elevated after the overexpression of FBL. Conclusion: LPS induced the expression of FBL in HT22 cells through the RAS/MAPK signaling pathway, and FBL further activated the NF-kB signaling pathway, which promoted the expression of relevant inflammatory genes and the release of cytokines. The present study reveals the mechanism by which FBL promotes neuroinflammation and offers a potential target for the treatment of neuroinflammation.

2.
Molecules ; 28(8)2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37110731

ABSTRACT

Paeonia suffruticosa (P. suffruticosa) seed meal is a byproduct of P. suffruticosa seed processing, which contains bioactive substances such as monoterpene glycosides, and has not been effectively utilized at present. In this study, monoterpene glycosides were extracted from P. suffruticosa seed meal using an ultrasound-assisted ethanol extraction process. The monoterpene glycoside extract was then purified by macroporous resin and identified using HPLC-Q-TOF-MS/MS. The results indicated the following optimal extraction conditions: ethanol concentration, 33%; ultrasound temperature, 55 °C; ultrasound power, 400 W; liquid-material ratio, 33:1; and ultrasound time, 44 min. Under these conditions, the yield of monoterpene glycosides was 121.03 mg/g. The purity of the monoterpene glycosides increased from 20.5% (crude extract) to 71.2% (purified extract) when using LSA-900C macroporous resin. Six monoterpene glycosides (oxy paeoniflorin, isomaltose paeoniflorin, albiflorin, 6'-O-ß-D-glucopyranoside albiflorin, paeoniflorin, and Mudanpioside i) were identified from the extract using HPLC-Q-TOF-MS/MS. The main substances were albiflorin and paeoniflorin, and the contents were 15.24 mg/g and 14.12 mg/g, respectively. The results of this study can provide a theoretical basis for the effective utilization of P. suffruticosa seed meal.


Subject(s)
Glycosides , Paeonia , Tandem Mass Spectrometry , Monoterpenes , Seeds , Ethanol
3.
Front Plant Sci ; 12: 659830, 2021.
Article in English | MEDLINE | ID: mdl-33968116

ABSTRACT

Centipedegrass [Eremochloa ophiuroides (Munro) Hack.] is a perennial warm-season grass that originated in China, and its speed of nodal rooting is important for lawn establishment. In our study, centipedegrass nodal rooting ability was limited by node aging. Transcriptome sequencing of nodal roots after 0, 2, 4, and 8 days of water culture was performed to investigate the molecular mechanisms of root development. GO enrichment and KEGG pathway analyses of DEGs indicated that plant hormone signal transduction and transcription factors might play important roles in centipedegrass nodal root growth. Among them, E3 ubiquitin-protein ligases participated in multiple hormone signal transduction pathways and interacted with transcription factors. Furthermore, an E3 ubiquitin protein ligase EoSINAT5 overexpressed in rice resulted in longer roots and more numerous root tips, while knockout of LOC_Os07g46560 (the homologous gene of EoSINAT5 in rice) resulted in shorter roots and fewer root tips. These results indicated that EoSINAT5 and its homologous gene are able to promote nodal root development. This research presents the transcriptomic analyses of centipedegrass nodal roots, and may contribute to elucidating the mechanism governing the development of nodal roots and facilitates the use of molecular breeding in improving rooting ability.

4.
Phys Chem Chem Phys ; 17(9): 6274-9, 2015 Mar 07.
Article in English | MEDLINE | ID: mdl-25648252

ABSTRACT

We demonstrate a solution method of Marangoni effect-controlled oriented growth (MOG) to fabricate highly oriented crystals of 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS pentacene) on the Si/SiO2 substrate. Based on the Marangoni effect induced by mixed solvent systems, large area aligned ribbon crystals can be achieved, covering over 60% on 4 cm × 1 cm Si/SiO2 substrates. We investigated the growth mechanism of the MOG method and found that the correct choice of solvents and appropriate solvent ratios are in favor of aligned crystal growth. With the ribbon crystals of TIPS pentacene, top-contact organic field-effect transistors are fabricated. The optimal device exhibits a field-effect mobility of 0.70 ± 0.22 cm(2) V(-1) s(-1) and an on/off ratio of 10(5). The MOG method, which has potential to be used in batch production and features easy control of crystal growth using non-contact forces, will benefit the development of low-cost, high-performance, organic semiconductor devices.

5.
Langmuir ; 30(40): 12082-8, 2014 Oct 14.
Article in English | MEDLINE | ID: mdl-25227560

ABSTRACT

We demonstrate a solution method of volatilize-controlled oriented growth (VOG) to fabricate aligned single crystals of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS pentacene) on a Si/SiO2 substrate. Through controlling the evaporation rate of the solvent, large-area-aligned single-crystal layers can be achieved on several substrates at the same time, covering over 90% on 2 × 1 cm substrates. The method provides a low-cost, maneuverable technology, which has potential to be used in batch production. We find that the atmosphere of the solvent with high dissolving capacity is in favor of aligned single-crystal growth. Besides, the growth mechanism of the VOG method is investigated in this paper. Top-contact organic field-effect transistors based on the single crystals of TIPS pentacene are achieved on a Si/SiO2 substrate. The optimal device exhibits a field-effect mobility of 0.42 cm(2) V(-1) s(-1) and an on/off current ratio of 10(5). Our research indicates that the VOG method is promising in single-crystal growth on a Si/SiO2 substrate for commercial production.

6.
ACS Appl Mater Interfaces ; 6(11): 8337-44, 2014 Jun 11.
Article in English | MEDLINE | ID: mdl-24813352

ABSTRACT

An organic phototransistor (OPT) shows nonvolatile memory effect due to its novel optical writing and electrical erasing processes. In this work, we utilize an organic light-emitting diode (OLED) as the light source to investigate OPT-based memory (OPTM) performance. It is found that the OPTM can be used as either flash memory or write-once read-many-times memory by adjusting the properties of the Ta2O5 gate dielectric layer. UV/ozone treatment is applied to effectively change dielectric properties of the Ta2O5 film. The mechanisms for this are examined by X-ray photoelectron spectroscopy and capacitance-voltage measurement. It turns out that the densities of oxygen vacancies and defects in the first 1.8 nm Ta2O5 films near the Ta2O5/semiconductor interface are reduced. Furthermore, for the first time, we use this multifunctional OPTM, which unites the photosensitive and memory properties in one single device, as an optical feedback system to tune the brightness of the OLED. Our study suggests that these OPTMs have potential applications in tuning the brightness uniformity, improving the display quality and prolonging the lifetime of flat panel displays.

7.
Chem Commun (Camb) ; 46(35): 6533-5, 2010 Sep 21.
Article in English | MEDLINE | ID: mdl-20714551

ABSTRACT

Novel tetranuclear Cu(ii)-Ln(iii)-Cr(iii) complexes with oxamidate and oxalate bridges have been prepared using [Cu(L)], LnCl(3).6H(2)O and K(3)[Cr(ox)(3)] components (ox(2-) = oxalate) during the development of new multimetallic complexes as molecular magnets. Overall ferromagnetic properties have been observed in the Cu(2)GdCr compound, and no single-magnet behavior has been found in the Cu(2)TbCr and Cu(2)DyCr compounds.


Subject(s)
Chromium/chemistry , Coordination Complexes/chemical synthesis , Copper/chemistry , Lanthanoid Series Elements/chemistry , Organometallic Compounds/chemistry , Coordination Complexes/chemistry , Crystallography, X-Ray , Dysprosium/chemistry , Gadolinium/chemistry , Magnetics , Molecular Conformation , Oxalates/chemistry , Oxamic Acid/chemistry , Temperature , Terbium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...